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Network-on-chip (NOC)

Topologies
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Network Topology
 Static arrangement of channels and nodes in an 

interconnection network
 The roads over which packets travel
 Topology chosen based on cost and performance

Cost and performance determided by many factors 
(flow control, routing, traffic)

Measures to evaluate just the topology
Bisection bandwidth
Channel load
Path delay
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Factors Affecting Perfomance

Factors that influence the performance of a 
NoC are
Topology (static arrangement of channels and 

nodes)
Routing Technique (selection of a path through 

the network)
Flow Control (how are network resources 

allocated, if packets traverse the network)
Router Architecture (buffers, switches, …)
Traffic Pattern
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Direct and Indirect Networks

Direct Network
Every Node in the 

network is both a 
terminal and a switch

 Indirect Network
Nodes are either 

switches or terminal



5

Direct Networks
 aka point-to-point network

 Consists of a set of nodes, each one 
being directly connected to a (usually 
small) subset of other nodes in the 
network
These nodes may have different 

functional capabilities
E.g., vector processors, graphics 

processors, I/O processors, etc.
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Direct Networks - Router
 A common component of the 

node is the router 
It handles message 

communication among nodes
For this reason, direct networks 

are also known as router-based 
networks

Each router has direct 
connections to the router of its 
neighbors
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Direct Networks - Links

Two neighboring nodes are connected by a 
pair of unidirectional channels in opposite 
directions

A bidirectional channel may also be used to 
connect two neighboring nodes
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Direct Networks - Scalability

As the number of nodes in the system 
increases, the total communication 
bandwidth also increase
Thus, direct networks have been a popular 

interconnection architecture for constructing 
large-scale parallel computers
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Direct Networks - Topologies

Many network topologies have been 
proposed in terms of their graph-theoretical 
properties
Very few of them have ever been implemented
Most of the implemented networks have an 

orthogonal topology
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DN – Orthogonal Topology

A network topology is orthogonal if and only 
if nodes can be arranged in an orthogonal n-
dimensional space, and every link can be 
arranged in such a way that it produces a 
displacement in a single dimension

Orthogonal Topologies
Strictly orthogonal topology

Every node has at least one link crossing each 
dimension

Weakly orthogonal topology
Some nodes may not have any link in some 

dimensions
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DN – Strictly Orthogonal Topologies

Routing is very simple
Can be efficiently implemented in hardware

Most popular strictly orthogonal direct 
network topologies
n-dimensional mesh
k-ary n-cube (torus)
Hypercube
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n-Dimensional Mesh

 It has K
0
xK

1
x...xK

n-1
 nodes, K

i
 nodes along 

each dimension i
Two nodes X and Y are neighbors if and 

only if y
i
 = x

i
 for all i, 0 ≤ i ≤ n−1, except one, 

j, where y
j
 = x

j
 ± 1

Thus, nodes have from n to 2n neighbors, 
depending on their location in the mesh
Therefore, this topology is not regular
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n-Dimensional Mesh

3-dimensional mesh
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k-ary n-cube

All nodes have the same number of 
neighbors

 It has Kn nodes
Two nodes X and Y are neighbors if and 

only if y
i
 = x

i
 for all i, 0 ≤ i ≤ n−1, except one, 

j, where y
j
 = (x

j
 ± 1) mod K

Modular arithmetic adds wraparound channels
Therefore, this topology is regular
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k-ary n-cube

3-ary 2-cube
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Hypercube

 It is a special case of both n-dimensional 
meshes and k-ary n-cubes

A hypercube is an n-dimensional mesh in 
which K

i
 = 2 for 0 ≤ i ≤ n−1, or a 2-ary n-

cube
This topology is regular
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Hypercube

2-ary 4-cube (hypercube)
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Other Direct Network Topologies

 Aimed at minimizing the network diameter

 Every node but the root has a single parent node
Trees contain no cycles

 k-ary tree
A tree in which every node but the leaves has a fixed number 

k of descendants

 Balanced tree
The distance from every leaf node to the root is the same

Ubalanced tree Balanced tree
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Drawbacks of Trees

Root node and the nodes close to it become 
a bottleneck
Allocating a higher channel bandwidth to 

channels located close to the root node
Using channels with different bandwidths is not 

practical, especially when message transmission is 
pipelined

There are no alternative paths between any 
pair of nodes
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Indirect Networks

The communication between 
any two nodes is carried 
through some switches

Each node has a network 
adapter that connects to a 
network switch

The interconnection of those 
switches defines various 
network topologies
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Topology & Physical Constraints

 It is important to model the relationships 
between physical constraints and topology
And the resulting impact on performance

Network optimization is the process of 
utilizing these models
For selecting topologies that best match the 

physical constraints of the implementation

For a given implementation technology, 
physical constraints determine architectural 
features 
Channel widths

Impact on zero-load latency
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Bisection Width/Bandwidth
 One of the physical constraints facing the implementation of 

interconnection networks is the available wiring area

 The available wiring area is determined by the packaging 
technology
Whether the network resides on a chip, multichip module, or 

printed circuit board

 VLSI systems are generally wire limited
The silicon area required by these systems is determined by the 

interconnect area, and the performance is limited by the delay of 
these interconnections

 The choice of network dimension is influenced by how well the 
resulting topology makes use of the available wiring area
One such performance measure is the bisection width
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Cuts
 A cut of a network, C(N1,N2), is a set of channels 

that partitions the set of all nodes into two disjoint 
sets, N1 and N2

Each element in C(N1,N2) is a channel with a source in 
N1 and destination in N2 or vice versa
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Bandwidth of the Cut

 Total bandwidth of the cut C(N1,N2)

BN 1 ,N 2 = ∑
c∈C N 1 , N2 

bc
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Bisection
 The bisection is a cut that partitions the entire 

network nearly in half

 The channel bisection of a network, BC, is the 
minimum channel count over all bisections

 The bisection bandwidth of a network, BB, is the 
minimum bandwidth over all bisections

BC= min
bisections

∣C N 1 , N2 ∣

BB= min
bisections

∣BN 1 ,N 2 ∣
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Bisection Examples
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Diameter
 The diameter of a network, Hmax, is the largest, minimal 

hop count over all pairs of terminal nodes

For a fully connected network with N terminals built from 
switches with out degree O, Hmax is bounded by

Each terminal can reach at most O other terminals after one hop

At most O
2 after two hops, and at most O

H after H hops

If we set O
H = N and solve for H, we get (1)

Hmax= max
x,y∈N

∣H  x , y ∣

Hmax≥log δ O
N (1)
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Average Minimum Hop count

The average minimum hop count of a 
network, Hmin, is defined as the average hop 
count over all sources and destinations

Hmin=
1

N 2 ∑
x , y∈N

H  x , y 
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Physical Distance and Delay

The physical distance of a path is

The delay of a path is

D P =∑
c∈P

l c

t  P =D P /v
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Performance

Throughput
Data rate in bits/s that the network accepts per 

input port
It is a property of the entire network
It depends on

Routing
Flow control
Topology
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Ideal Throughput

 Ideal throughput of a topology
Throughput that the network could carry with 

perfect flow control (no contention) and routing 
(load balanced over alternative paths)

Maximum throughput
It occurs when some channel in the network 

becomes saturated

We suppose for semplicity that all the 
channel bandwidths are b 
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Channel Load
 We define the load of a channel c, c, as

 Equivalently
Amount of traffic that must cross c if each input injects one unit of 

traffic

 Of course, it depends on the traffic pattern considered
We will assume uniform traffic

γ c=
bandwidth demanded from channel c
bandwidth of the input ports
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Maximum Channel Load

Under a particular traffic pattern, the 
channel that carries the largest fraction of 
traffic ( the bottleneck channel) determines 
the maximum channel load max of the 
topology

γ max=max
c∈C

γ c
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Ideal Throughput
 When the offered traffic reaches the throughput of the network, the 

load on the bottleneck channel will be equal to the channel bandwidth 
b
Any additional traffic would overload this channel

 The ideal throughput ideal is the input bandwidth that saturates the 
bottleneck channel

γ c=
bandwidth demanded from channel c
bandwidth of the input ports

γ c=γ max=
b
Θ ideal

Θ ideal=
b
γ max
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Bounds for max


max

 is very hard to compute for the general 

case (arbitrary topology and arbitrary traffic 
pattern)

For uniform traffic some upper and lower 
bounds can be computed with much less 
effort
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Lower Bound on max

 The load on the bisection channels gives a lower bound on 
max

 Let us assume uniform traffic
On average, half of the traffic (N/2 packets) must cross the BC 

bisection channels
The best throughput occurs when these 

packets are distributed evenly across the 
bisection channels

Thus, the load on each bisection channel 
B is at least

½(N/2)
½(N/2)

½(N/2)
½(N/2)

γ max≥γ B=
N

2BC
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Upper Bound on ideal

 We found that

 Combining the above equations we have

γ max≥γ B=
N

2BC
Θ ideal=

b
γ max

and

Θ ideal≤
2 bBC
N

=
2BB

N
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Latency

The latency of a network is the time 
required for a packet to traverse the network
From the time the head of the packet arrives at 

the input port to the time the tail of the packet 
departs the output port
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Components of the Latency

We separate latency, T, into two 
components
Head latency (Th): time required for the head 

to traverse the network

Serialization latency (Ts): time for a packet of 
length L to cross a channel with bandwidth b

T=T hT s=T h
L
b
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Contributions

Like throughput, latency depends on
Routing
Flow control
Design of the router
Topology
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Latency at Zero Load
 We consider latency at zero load, T0

Latency when no contention occurs

 Th: sum of two factors determined by the topology

Router delay (Tr): time spent in the routers

Time of flight (Tw): time spent on the wires

T h=T rT w=Hmin tr
Dmin

v

T 0=Hmin t r
Dmin

v

L
b
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Latency at Zero Load

T 0=Hmin t r
Dmin

v

L
b

Topology
Technology

Node degree
Router design
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Packet Propagation

x y z
Arrive at x

Leave x

Arrive at y

Leave y

Arrive at z

time

tr

tr

txy

tyz

L/b

Routing delay

Link latency

Serialization latency
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Case Study

A good topology exploits characteristics of 
the available packaging technology to meet 
bandwidth and latency requirements of the 
application

To maximize bandwidth a topology should 
saturate the bisection bandwidth
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Bandwidth Analysis (Torus)

03 13 23 33

02 12 22 32

01 11 21 31

00 10 20 30

Assume: 256 signals @ 1Gbits/s

Bisection bandwidth 256 Gbits/s
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Bandwidth Analysis (Torus)

16 unidirectional channels cross the mid-
point of the topology

To saturate the bisection of 256 signals
Each channel crossing the bisection should be 

256/16 = 16 signals wide

Constraints
Each node packaged on a IC

Limited number of I/O pins (e.g., 128)
8 channels per node  8x16=128 pins  OK



47

Bandwidth Analysis (Ring)

 4 unidirectional channels cross the mid-point of the topology
 To saturate the bisection of 256 signals

Each channel crossing the bisection should be 256/4 = 64 signals wide

 Constraints
Each node packaged on a IC

 Limited number of I/O pins (e.g., 128)
 4 channels per node  4x64=256 pins  INVALID

With identical technology constraints, the ring provides only half the 
bandwidth of the torus

0 1 2 3 4 5 6 7

15 14 13 12 11 10 9 8
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Delay Analysis
 The application requires only 16Gbits/s

…but also minimum latency

 The application uses long 4,096-bit packets
 Suppose random traffic

Average hop count 
Torus = 2
Ring = 4

 Channel size
Torus = 16 bits
Ring = 32 bits
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Delay Analysis
 Serialization latency (channel speed 1GHz)

Torus = 4,096/16 * 1ns = 256 ns
Ring = 4,096/32 * 1ns = 128 ns

 Latency assuming 20ns hop delay
Torus = 256 + 20*2 = 296 ns
Ring = 128 + 20*4 = 208 ns

 No one topology is optimal for all applications
Different topologies are appropriate for different 

constraints and requirements
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